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Affective Polarization

“The tendency of people identifying as Republicans or Democrats to view opposing partisans

negatively and copartisans positively” (lyengar & Westwood, 2015)
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Measurement of Affective Polarization

e Self-reports on surveys as measures

o Feeling thermometers (lyengar et al. 2012)

o Trait ratings (Levendusky & Malhotra 2016)
e.g., selfish, intelligent, open-minded

o Social distance (lyengar et al. 2012, Druckman 2019)
e.g., feelings about child marrying a Democrat

o Some alternative measures (lyengar & Westwood 2015, Carlin & Love 2013)
e.g., implicit association test, behavioral games
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e Social media activities as measures?
o An emerging literature on measuring ideological polarization on social media

e.g., Barbera (2015)
o Little systematic investigation on measuring affective polarization with social media data



Research Questions

e How do social media activities vary across levels of affective polarization?
e How does social media text serve as a measure of affective polarization?
e How does social media text predict affective polarization?



Data: Survey-linked Twitter Data

e Survey of 1,239 U.S. Democratic (56%) and Republican (44%) Twitter users
e Collected by YouGov in October 2017
e Two measures of affective polarization
o Feeling Thermometers: “How positively/negatively do you feel about
Democrats/Republicans”
o Adjectives: “How close-minded, generous, intelligent, and selfish are
Democrats and Republicans?”
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Data: Survey-linked Twitter Data

Scraped respondents tweets over a 10 year period (N = ~2 million)

Summary statistics of tweets from past 12 months

O O O O O

877,258 tweets

1,105 respondents with at least one tweet

Median # of tweets = 251
Mean # of tweets = 794
Max = 10,008
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How do social media activities vary across
levels of affective polarization”



Affectively Polarized Respondents Tweet More
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ldeological “Echo Chamber” and Affective Polarization

Proportion of Network With Similar Political Views
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Can we measure affective polarization
with text of tweets?



Constructing Measures of Affective Polarization

e Step 1: Identifying political tweets: supervised learning

o Human coders labelled 7,400 tweets

o Supervised machine learning (Random Forest, F1 = 0.91)
e Step 2: Identifying partisan tweets: seed dictionary + word embedding

o Started with a “seed dictionary” of partisan words

o Trained word embeddings with all the tweet text

o Augment the dictionary by looking up closest words and phrases in the embedded space
e Step 3: Coding sentiments in tweets: external dictionary

o Crowd-sourced sentiment-emotion dictionary by Mohammad (2013, 2014)
o Manual validation by the authors
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Twitter Behavior and Affective Polarization

Proportion of Tweets About Politics
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Twitter Behavior and Affective Polarization

Proportion of Tweets About In-Party Proportion of Tweets About Out-Party
0.06 0.06
0.04 0.04
g g I

- i - M

++ ++

0.00 0.00
25 50 75 100 25 50 75 100
Negative Feelings About Out-Party Negative Feelings About Out-Party 16



Negative Tweets About Parties
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Positive Tweets about Parties
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Can we predict affective polarization with
text of tweets?



Predicting Affective Polarization with Tweets

e \We searched for the best predictors of affective polarization from tweets
o Experimented with half of a million models with a variety of specifications
o Selected 1,296 best models for evaluation and interpretation

e Models: Linear Model with L1 Regularization (LASSO)

o Variable selection: N of respondents = 1,239, P up to 18,329
o Interpretable coefficients: Focus on selected features with negative coefficients

e \Why not more complex models (e.g., ensemble models, neural network)?

o The best linear models perform reasonably well
o Interpretability
o Small dataset

20



Design of Experiment

All combinations of 5 types of specifications

e For each specification: Parameter grid search with 10-fold cross-validations
e Evaluated with RMSE of out-of-sample prediction

One/Two steps

Outcomes
Targets
Features

Time

One-step: One model for dems and reps
Two-step: Predict party ID — Separate models for Dems and Reps

Feeling thermometer | Adjectives | Combination
Democrats | Republicans
Full text (trigram) | @ only | #only | URLsonly | @ +#| @ + # + URLs

~ 2 months to 2 years

Tweets 60, 120, 180, ... 720 days before survey (60-day intervals) 9



Our Best Models: Two-step models

Step 1: Predict Party ID (Regularized Logit, Out-of-sample F1 = 0.81)

Step 2: Use model 1,2 or 3,4 based on predicted party ID from Step 1

Model # | Predicted Party ID

1 Democrats
2 Democrats
3 Republicans
4 Republicans

Target of Affect

In-party
Out-party
In-party

Out-party

Out-of-sample RMSE
(outcome scale 0 - 100)

13.2
13.7
16.1

17.0
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Predictors of Negative Outparty Feeling in Text
(Average negative coefficients of top 30 models)
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Predictors of Negative Outparty Feeling in @ and #
(Average negative coefficients of top 30 models)
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Predictors of Negative Outparty Feeling in URLSs
(Average negative coefficients of top 30 models)
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Predicting Party ID Before Predicting Affect Boost Performance

Two-step models perform significantly better
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Predict Democrats’ Affect With Smaller Error Than Republicans’

Models predicting democrats' affect perform better
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Predict In-party Feelings with Smaller Error Than Out-party
Models predicting in-party affect perform better
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Combining Feeling Thermometers and Adjectives as Outcome Boosts

Performance
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Predictors: @, #, and URLs Shared Reveal Affective Polarization

Full text brings small gain in model performance
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Time: More tweets = More Signals + Noise

Including tweets from a longer period not render better performance

RMSE
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Take-Aways

Individuals with high levels of affective polarization...
o tweet much more about politics and both political parties
o have much more ideologically homogeneous Twitter networks

Strong correlation between affective polarization and negative sentiment
toward parties, particularly for out-party

Models predicting affective polarization using Tweets, hashtags, URLs, and
mentions perform reasonably well, even using a small set of text features and
relatively few tweets

Future work will incorporate more data (e.g., incorporate ideological networks,
user profiles) into predictive models
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