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Affective Polarization
● “The tendency of people identifying as Republicans or Democrats to view opposing partisans 

negatively and copartisans positively” (Iyengar & Westwood, 2015)

2Source: Iyengar et al. (2020)



Measurement of Affective Polarization
● Self-reports on surveys as measures

○ Feeling thermometers (Iyengar et al. 2012)
○ Trait ratings (Levendusky & Malhotra 2016)

    e.g., selfish, intelligent, open-minded
○ Social distance (Iyengar et al. 2012, Druckman 2019)

    e.g., feelings about child marrying a Democrat
○ Some alternative measures (Iyengar & Westwood 2015, Carlin & Love 2013)

    e.g., implicit association test, behavioral games
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● Social media activities as measures?
○ An emerging literature on measuring ideological polarization on social media 

    e.g., Barbera (2015)
○ Little systematic investigation on measuring affective polarization with social media data
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Research Questions
● How do social media activities vary across levels of affective polarization?
● How does social media text serve as a measure of affective polarization?
● How does social media text predict affective polarization?
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Data: Survey-linked Twitter Data
● Survey of 1,239 U.S. Democratic (56%) and Republican (44%) Twitter users
● Collected by YouGov in October 2017
● Two measures of affective polarization

○ Feeling Thermometers: “How positively/negatively do you feel about 
Democrats/Republicans”

○ Adjectives: “How close-minded, generous, intelligent, and selfish are 
Democrats and Republicans?”
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Survey Measures of Affective Polarization
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Data: Survey-linked Twitter Data
● Scraped respondents tweets over a 10 year period (N = ~2 million)
● Summary statistics of tweets from past 12 months

○ 877,258 tweets
○ 1,105 respondents with at least one tweet
○ Median # of tweets = 251
○ Mean # of tweets = 794
○ Max = 10,008
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How do social media activities vary across 
levels of affective polarization?
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Affectively Polarized Respondents Tweet More
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Ideological “Echo Chamber” and Affective Polarization
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Ideological “Echo Chamber” and Affective Polarization
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Can we measure affective polarization 
with text of tweets?
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Constructing Measures of Affective Polarization
● Step 1: Identifying political tweets: supervised learning

○ Human coders labelled 7,400 tweets
○ Supervised machine learning (Random Forest, F1 = 0.91)

● Step 2: Identifying partisan tweets: seed dictionary + word embedding
○ Started with a “seed dictionary” of partisan words
○ Trained word embeddings with all the tweet text
○ Augment the dictionary by looking up closest words and phrases in the embedded space

● Step 3: Coding sentiments in tweets: external dictionary
○ Crowd-sourced sentiment-emotion dictionary by Mohammad (2013, 2014)
○ Manual validation by the authors
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Twitter Behavior and Affective Polarization
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Twitter Behavior and Affective Polarization
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Negative Tweets About Parties
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Positive Tweets about Parties
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Can we predict affective polarization with 
text of tweets?
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Predicting Affective Polarization with Tweets
● We searched for the best predictors of affective polarization from tweets

○ Experimented with half of a million models with a variety of specifications
○ Selected 1,296 best models for evaluation and interpretation

● Models: Linear Model with L1 Regularization (LASSO)
○ Variable selection: N of respondents = 1,239, P up to 18,329
○ Interpretable coefficients: Focus on selected features with negative coefficients

● Why not more complex models (e.g., ensemble models, neural network)?
○ The best linear models perform reasonably well
○ Interpretability
○ Small dataset
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Design of Experiment
All combinations of 5 types of specifications

● For each specification: Parameter grid search with 10-fold cross-validations
● Evaluated with RMSE of out-of-sample prediction

One/Two steps One-step: One model for dems and reps
Two-step: Predict party ID → Separate models for Dems and Reps

Outcomes Feeling thermometer | Adjectives | Combination

Targets Democrats | Republicans

Features Full text (trigram) | @ only | # only | URLs only | @ + # | @ + # + URLs

Time ~ 2 months to 2 years
Tweets 60, 120, 180, ... 720 days before survey (60-day intervals)
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Our Best Models: Two-step models 
Step 1: Predict Party ID (Regularized Logit, Out-of-sample F1 = 0.81)

Step 2: Use model 1,2 or 3,4 based on predicted party ID from Step 1

Model # Predicted Party ID Target of Affect Out-of-sample RMSE
(outcome scale 0 - 100)

1 Democrats In-party 13.2

2 Democrats Out-party 13.7

3 Republicans In-party 16.1

4 Republicans Out-party 17.0
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Predictors of Negative Outparty Feeling in Text
(Average negative coefficients of top 30 models)
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Predictors of Negative Outparty Feeling in @ and #
(Average negative coefficients of top 30 models)
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Predictors of Negative Outparty Feeling in URLs
(Average negative coefficients of top 30 models)
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Predicting Party ID Before Predicting Affect Boost Performance
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Predict Democrats’ Affect With Smaller Error Than Republicans’
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Predict In-party Feelings with Smaller Error Than Out-party

28



Combining Feeling Thermometers and Adjectives as Outcome Boosts 
Performance
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Predictors: @, #, and URLs Shared Reveal Affective Polarization
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Time: More tweets = More Signals + Noise
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Take-Aways
● Individuals with high levels of affective polarization...

○ tweet much more about politics and both political parties
○ have much more ideologically homogeneous Twitter networks

● Strong correlation between affective polarization and negative sentiment 
toward parties, particularly for out-party

● Models predicting affective polarization using Tweets, hashtags, URLs, and 
mentions perform reasonably well, even using a small set of text features and 
relatively few tweets

● Future work will incorporate more data (e.g., incorporate ideological networks, 
user profiles) into predictive models
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